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Abstract. A method is described for the efficient generation of lists of graphs which can 
be embedded on very loose-packed lattices. 

1. Introduction 

This paper is concerned with the problem of listing connected inear graphs whic 1 

have nonzero lattice constants on very loose-packed lattices. The problem arises from 
the investigation of many-body systems by the method of exact series expansion. Such 
methods are well established in the fields of phase transitions and critical phenomena 
and are reviewed by Domb and Green (1974). Here we are concerned with the details of 
some of the general techniques used in applying the method, though not with any 
particular model in mind. This paper follows the study of the Ising ferromagnet above 
the Curie temperature by Sykes et a1 (1974) which contains a bibliography and some 
details of the terminology we shall use. 

The techniques to  be described here are very much concerned with the enumeration 
and identification of particular subgraphs of a graph. This problem also arises in the 
calculation of the weight which determines the contribution of a graph to a particular 
model of a physical system (Sykes and Hunter 1974, Domb 1972a, b). One of us 
(S McKenzie 1975) has used some of these techniques to extend the high-temperature 
series expansion of the zero-field susceptibility of the Ising model. 

Very loose-packed lattices such as the honeycomb, diamond and hydrogen peroxide 
lattices have been used in studies of polymers, where the diamond lattice models the 
tetrahedral carbonsarbon bond angle, and in studies of the Ising model on the honey- 
comb lattice (Sykes et a1 1972) and on the hydrogen peroxide lattice (Betts 1970). The 
interest for the Ising model is that a series of lattices with coordination number 3 of 
differing dimensionality can be constructed of which the honeycomb and hydrogen 
peroxide lattices are the first two members of the series. Because of the low coordination 
number only a very restricted class of graph contributes to the series expansion for 
any model. Because the series expansions behave in a similar fashion to those of more 
highly coordinated lattices, attempts to understand the fundamentals of critical 
phenomena such as those of Domb (1972a, b) can concentrate on this restricted class 
of graph. Furthermore, not only is the class of graph restricted but the actual number 
of graphs which need to be taken into account is also a very small subset of all possible 
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graphs of that class. It is the problem of efficiently finding these subsets to which this 
paper is addressed. 

The number of weak embeddings (G, H )  of a graph G on a graph H is the number 
of subgraphs of H which are isomorphic to G (Sykes et a1 1966). For the purposes 
of this paper a lattice is defined as a locally finite infinite graph which is regular. The 
concept of regularity will be defined precisely in a subsequent publication but basically 
it means that every vertex is equivalent to every other vertex. Examples of lattices 
can be found in table 1. The lattice constant p(G, 9) of a graph G on a lattice 9 is the 

Table 1. Classification of lattices. The polygons which occur on each lattice are listed by 
the number of edges. 

Group Lattice 

~ ~~~ 

Coordination 
Dimension number Polygons 

Close-packed Triangular 2 
Face-centred cubic 3 
Hexagonal close-packed 3 

Loose-packed Simple quadratic 2 
Body-centred cubic 3 
Simple cubic 3 

Very loose-packed Honeycomb 2 
Diamond 3 
Hydrogen peroxide 3 

6 
12 
12 

4 
8 
6 

3 
4 
3 

3,4,5,6 , . . .  
3,4, 5,6, . . . 
3,4,5,6 , . . .  

4,6,8,10 , . . .  
4,6,8,10 , . . .  
4,6,8,10 ,... 

6,8, 10, 12,. . . 
8, 10, 12, 14,.. . 
10, 14, 16, 18,. . 

number of weak embeddings of G on 9 per lattice site. Usually the lattice constant 
of a graph varies from lattice to lattice. When p(G, 9) 0, we shall say that G does 
not occur on 9. Many problems can be formulated in a series expansion, the coefficients 
of the terms of which can be represented graphically. The contribution of each graph 
to the series expansion is a weight factor, dependent on the problem, multiplied by 
the lattice constant for a particular lattice 9. Hence only graphs which occur on Y 
will contribute to the series expansion for 9. It is therefore sensible to list for each 
lattice only those graphs which occur on the lattice. 

Lattices may be divided into three broad groups classified by the smallest polygon 
which occurs on the lattice. The groups are known as close-packed, loose-packed and 
very loose-packed, for which the smallest polygons are respectively the triangle, the 
square and the hexagon or larger (table 1). Furthermore, only polygons with an even 
number of edges can occur on loose-packed and very loose-packed lattices. 

For a graph to occur on a lattice an elementary requirement is that each cycle of 
the graph must be isomorphic to a polygon which occurs on the lattice. For example, 
the graph occurs on the close-packed lattices but not on any loose-packed or 
very loose-packed lattices since it contains triangles. The second elementary require- 
ment is that no vertex of a graph has a valence greater than the coordination number 
of the lattice. For example, the graph 
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does not occur on the honeycomb lattice although each cycle occurs. A procedure for 
generating a list of graphs for a lattice which takes account of these two elementary 
requirements is reasonably efficient for the close-packed and loose-packed lattices, where 
by efficiency we mean the ratio of the number of graphs which occur on the lattice to 
the total number generated. 

The two elementary requirements do not take into account higher-order restrictions 
which involve forbidden subgraphs. That is, if a graph G does not occur on a lattice 
then a graph H, one of whose subgraphs is isomorphic to G, will not occur. For example, 
the graph @ does not occur on the simple cubic lattice although it contains only 
even cycles, so that the graph @J cannot occur on the simple cubic lattice. These 
higher-order restrictions apply with most force when generating lists for the very loose- 
packed lattices. The general principle of the method we have adopted is to generate 
only those graphs all of whose subgraphs are known to occur on the lattice. 

2. The method 

In this section we shall quote without proof a number of graph theoretical results. 
Most of the statements are fairly obvious, but we shall give examples where a statement 
is not immediately apparent. 

As mentioned in the introduction the purpose of the procedure we shall describe 
is to generate a list of graphs all of whose subgraphs occur for a particular lattice. 
It is necessary in creating and using a list of graphs that each graph be given an un- 
ambiguous name. We have used the nomenclature described by McKenzie (1975). This 
nomenclature relies on the distinction between a topology and a realization of a topology. 
The method to be described will generate realizations of a topology. Hence the method 
is based on properties, such as cycle index, which are held both by a topology and all 
its realizations. 

Given a list of graphs which are at least two-point connected (star graphs) and 
which occur on the lattice, it is easy to construct a list of graphs which are less than 
two-point connected since such graphs are mixed trees, each block of which is a star 
graph. For example, knowing that the graphs A and @ occur, then the graphs 

should also occur, assuming that the coordination number of the lattice is greater than 4. 
Hence the problem is reduced to creating a list of star graphs which are known to occur. 

To do this we have used the fact that all realizations of a topology which is at least 
two-point connected and which contains no loops are also at least two-point connected. 
If we call such topologies star topologies then star graphs are realizations of star 
topologies, and conversely the topology of a star graph is a star topology. The problem 
of enumerating star topologies has been solved by Heap (1966) who gives a list of such 
topologies up to cycle index 5. Heap has since produced a complete list of cycle index 
6 topologies and a partial list of cycle index 7 topologies. The procedure described 
here is to generate a list of star realizations which are known to occur for each star 
topology. 
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The crux of the method is to form the set of maximal subtopologies of a star topology 
by removing each bridge of the topology one by one. There are four possible situations 
from which a bridge may be removed namely: the bridge connects two nodes of valence 
higher than 3 ;  the bridge connects a node of valence 3 to a node of higher valence; 
the bridge connects two nodes of valence 3 and the antinodes formed in removal of the 
bridge lie either on the same bridge or on two different bridges of the subtopology so 
formed. In each case the cycle index of each maximal subtopology is one less than 
that of the topology. Only the subset of the set of maximal subtopologies which are 
star topologies needs to be retained. This subset contains at least one member. 

We now suppose that we have lists of realizations of the maximal subtopologies ; 
that these lists are complete up to the desired number of lines; and that the lists contain 
only graphs which occur on the lattice. We then generate a list of realizations of the 
topology from the list of realizations of one of the maximal subtopologies by replacing 
the bridge removed. 

To illustrate the method by an example, suppose that we wish to generate realizations 
up to eight lines of the topology A given that the realizations a, a and of 
the topology 0 occur on the lattice. If the bridge removed is as shown below : 

the resulting maximal subtopology is of the given topology namely a. From the 
realization Q> we then generate the realizations 

- -  .-- e 
of the topology A. From a we generate 

and from @ we generate 

?*. 
- - - - -  e and cc. 

Not all the generated realizations are distinct and duplications must be removed. 
Furthermore, this method of generating realizations of the topology from a list 

of realizations of one of the maximal subtopologies may create a realization for which 
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a realization of one of the other maximal subtopologies does not occur. The generated 
list is therefore checked to ensure that, for each member, all subgraphs which are realiza- 
tions of the other maximal subtopologies are present in the list of realizations of the 
maximal subtopologies. This amended list contains all realizations of the topology 
such that for each member of the list, all subgraphs which are realizations of the maximal 
star subtopologies are known to occur on the lattice. 

The amended list is now checked to see if all the generated graphs occur on the lattice. 
Those which do not occur are removed to produce a final list. By these means we have 
produced a list of graphs of cycle index c, all of which occur on the lattice, from a list 
of graphs of cycle index (c- 1). The method is therefore iterative, proceeding from 
low cycle index to high cycle index. Hence we start with a list of polygons which are 
known to occur and create a list of cycle index 2 graphs which are known to occur. 
Thus in creating the list of cycle index c graphs from cycle index (c - 1) we are sure that 
all subgraphs of cycle index less than (c) are known to occur. 

3. Discussion 

To summarize, the method we have described above generates a list of graphs of cycle 
index c which occur on a given lattice from a known list of graphs of cycle index (c - 1). 
The method builds a list of realizations of a topology from the known list of realizations 
of one of its maximal subtopologies, checks each new realization for forbidden sub- 
graphs belonging to other maximal subtopologies and finally rejects any new realiza- 
tion which does not occur on the given lattice. 

The procedure has been programmed for use on an IBM 360 computer. The major 
problem in using this method is to reduce to a minimum the number of realizations 
generated which duplicate realizations which have been generated previously. For 
example, from @ we may generate (a) while from a we may generate (p). 
Removing the distinction between broken and full lines it can be seen that (a) and 
(p) are isomorphic. The solution of this problem is too technical to go into in much 
detail but it is obvious that symmetry plays an important role. Both the symmetry 
of the topology and that of the maximal subtopology are taken into account. For this 
reason the canonization procedure described by McKenzie (1975) which produces an 
explicit realization of the bridge group of a topology is particularly convenient. One 
technique which is particularly economical is to start replacing the bridge removed at 
the number of lines of any equivalent bridge in the realization of the maximal sub- 
topology. An equivalent bridge to the bridge removed is a bridge of a topology which 
occupies an equivalent position in the topology under the operation of the bridge 
group of the topology. The technique depends on ordering the realizations of the 
maximal subtopologies by the number of lines and on starting to generate graphs from 
the realizations with the smallest number of lines. 

The method has been used to generate lists of graphs which occur on the diamond 
lattice up to 26 lines and hydrogen peroxide lattice up to 35 lines. The efficiency of the 
process is normally greater than 80% at any stage. For example, for the diamond 
lattice 527 realizations at 23 lines of the topology were generated of which 
436 occur. If the lattice were close-packed one would expect 27 456 realizations with 
this number of lines. Readers interested in problems which involve the kind of graph 
list described in this paper are invited to contact either of the authors who may well 
be able to supply relevant information. 
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